Constraint Programming Puzzles in B

Michael Leuschel

September 2016

Introduction

- ProB can be used to process Latex files, i.e., ProB scans a given Latex file and replaces certain commands (such as \backslash probexpr) by processed results.
- the following slides were generated (on 25/11/2016 - 13h5624s) this way using ProB version 1.6.2 - beta1 (TueNov2215:53:312016 + 0100) and the command:
probcli -latex presentation_raw.tex presentation.tex

The \backslash probexpr command takes a B expression as argument and evaluates it. By default it shows the B expression and the value of the expression.

- $\backslash \operatorname{probexpr}\{\{1\} \backslash /\{2 * * 10\}\}$ in the raw Latex file will yield: $\{1\} \cup\left\{2^{10}\right\}=\{1,1024\}$
- $\backslash \operatorname{probexpr}\{\{1\} \backslash /\{2 * * 10\}\}\{$ ascii $\}$ instructs ProB to use the B ASCII syntax:
$\{1\} \backslash /\{2 * * 10\}=\{1,1024\}$

The \backslash probrepl command takes a REPL command and executes it. By default it shows only the output of the execution, e.g., in case it is a predicate TRUE or FALSE.

- \probrepl\{2**10>1000\} in the raw Latex file will yield: TRUE
- \backslash probrepl\{let DOM $=1 . .3\}$ outputs a value and will define the variable DOM for the remainder of the Latex run: $\{1,2,3\}$
- \probrepl\{f:DOM >-> DOM\}\{solution\}\{time\} shows the solution of a predicate and solving time: $f=\{(1 \mapsto 3),(2 \mapsto 2),(3 \mapsto 1)\}(0 m s)$

Other ProB Latex Commands

- \backslash probtable show an expression (usually a relation) as a Latex table
- \probdot show an expression (again, usually a relation) as a Dot graph
- \probprint just pretty-print a formula
- $\backslash \operatorname{probif}\{$ Test $\}\{$ Then\}\{Else\} a conditional, evaluating a predicate or boolean expression
- \backslash probfor $\{\mathrm{ID}\}\{$ Set $\}\{$ Body iteration

Overview

- We now show that some constraint problems can be encoded very easily in B
- However, solving constraints in a language such as B is often considered "too difficult"
- These examples show that some examples at least can be solved by ProB
- Long term of goal of research on ProB: make B suitable as a high-level constraint modelling language

Graph Coloring

- Let us first define a directed graph $g r=$ $\{(1 \mapsto 3),(2 \mapsto 4),(3 \mapsto 5)\}$

Graph Coloring

- Let us first define a directed graph $g r=$ $\{(1 \mapsto 3),(2 \mapsto 4),(3 \mapsto 5)\}$
- We want to color this graph using cols $=\{$ red, green $\}$

Graph Coloring

- Let us first define a directed graph $g r=$ $\{(1 \mapsto 3),(2 \mapsto 4),(3 \mapsto 5)\}$
- We want to color this graph using cols $=\{$ red, green $\}$
- We simply set up a total function from nodes to cols and require that neighbours in $g r$ have a different colour:

Graph Coloring

- Let us first define a directed graph $g r=$ $\{(1 \mapsto 3),(2 \mapsto 4),(3 \mapsto 5)\}$
- We want to color this graph using cols $=\{$ red, green $\}$
- We simply set up a total function from nodes to cols and require that neighbours in $g r$ have a different colour:
- Solution found by ProB for $\exists c o l .(c o l \in$ $1 . .5 \rightarrow \operatorname{cols} \wedge \forall(x, y) .(x \mapsto y \in \operatorname{gr} \Rightarrow \operatorname{col}(x) \neq \operatorname{col}(y)))$:

Graph Isomorphism

- We define two directed graphs $g 1=$
$\{(v 1 \mapsto v 2),(v 1 \mapsto v 3),(v 2 \mapsto v 3)\}$ and $g 2=$ $\{(n 1 \mapsto n 2),(n 3 \mapsto n 1),(n 3 \mapsto n 2)\}$

Graph Isomorphism

- We define two directed graphs $g 1=$

$$
\begin{aligned}
& \{(v 1 \mapsto v 2),(v 1 \mapsto v 3),(v 2 \mapsto v 3)\} \text { and } g 2= \\
& \{(n 1 \mapsto n 2),(n 3 \mapsto n 1),(n 3 \mapsto n 2)\}
\end{aligned}
$$

- The successors of $v 1$ in $g 1$ are $g 1[\{v 1\}]=\{v 2, v 3\}$

Graph Isomorphism

- We define two directed graphs $g 1=$

$$
\begin{aligned}
& \{(v 1 \mapsto v 2),(v 1 \mapsto v 3),(v 2 \mapsto v 3)\} \text { and } g 2= \\
& \{(n 1 \mapsto n 2),(n 3 \mapsto n 1),(n 3 \mapsto n 2)\}
\end{aligned}
$$

- The successors of $v 1$ in $g 1$ are $g 1[\{v 1\}]=\{v 2, v 3\}$
- We can check $g 1$ and $g 2$ for isomporhism by trying to find a solution for: \exists iso. (iso $\in V \rightarrow N \wedge \forall v .(v \in V \Rightarrow$ iso $[g 1[\{v\}]]=$ g2[iso[\{v\}]])).

Graph Isomorphism

- We define two directed graphs $g 1=$

$$
\begin{aligned}
& \{(v 1 \mapsto v 2),(v 1 \mapsto v 3),(v 2 \mapsto v 3)\} \text { and } g 2= \\
& \{(n 1 \mapsto n 2),(n 3 \mapsto n 1),(n 3 \mapsto n 2)\}
\end{aligned}
$$

- The successors of $v 1$ in $g 1$ are $g 1[\{v 1\}]=\{v 2, v 3\}$
- We can check $g 1$ and $g 2$ for isomporhism by trying to find a solution for: \exists iso. (iso $\in V \mapsto N \wedge \forall v .(v \in V \Rightarrow$ iso $[g 1[\{v\}]]=g 2[i s o[\{v\}]])$).
- ProB has found a solution, which is shown below:

Subset Sum Example (from Peter Stuckey)

- Problem:
"Find 4 different integers between 1 and 5 that sum to 14 "

Subset Sum Example (from Peter Stuckey)

- Problem:
"Find 4 different integers between 1 and 5 that sum to 14 "
- B Formulation:
$\exists S .(S \subseteq 1 . .5 \wedge \operatorname{card}(S)=4 \wedge \Sigma(z) .(z \in S \mid z)=14)$
- one solution found by ProB: $S=\{2,3,4,5\}$
- all solutions found by ProB:
$\{S \mid S \subseteq 1 . .5 \wedge \operatorname{card}(S)=4 \wedge \Sigma(z) .(z \in S \mid z)=14\}=$ $\{\{2,3,4,5\}\}$ (Oms)
- Note: in a constraint programming language: $[\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}]$: : 1..5, all_different([W,X,Y,Z]), W+X+Y+Z \#=14, labeling([X,Y,Z,W])

Coins Puzzle

- We have various bags each containing coins of different values coins $=\{16,17,23,24,39,40\}$.
- Puzzle: In total 100 coins are stolen; how many bags are stolen for each coin value?

Coins Puzzle

- We have various bags each containing coins of different values coins $=\{16,17,23,24,39,40\}$.
- Puzzle: In total 100 coins are stolen; how many bags are stolen for each coin value?
- one solution found by ProB: stolen $=\{(16 \mapsto 2),(17 \mapsto$ 4), $(23 \mapsto 0),(24 \mapsto 0),(39 \mapsto 0),(40 \mapsto 0)\}$
- all solutions found by ProB:
$\{s \mid s \in$ coins $\rightarrow \mathbb{N} \wedge \Sigma(x) .(x \in$ coins $\mid x * s(x))=100\}=$ $\{\{(16 \mapsto 2),(17 \mapsto 4),(23 \mapsto 0),(24 \mapsto 0),(39 \mapsto 0),(40 \mapsto$ $0)\}\}$ (Oms)
- Observe: coins is not bounded

Latin Squares

- Let us construct a latin square of order 6 using indices in $\{1,2,3,4,5,6\}$.

Latin Squares

- Let us construct a latin square of order 6 using indices in \{1,2,3,4,5,6\}.
- We want to construct a square \exists sol.(sol $\in i d x \times i d x \rightarrow i d x \wedge \forall(i, j 1, j 2) .(i \in i d x \wedge j 1 \in$ $i d x \wedge j 2 \in i d x \wedge j 1>j 2 \Rightarrow \operatorname{sol}(i \mapsto j 1) \neq \operatorname{sol}(i \mapsto$ $j 2) \wedge \operatorname{sol}(j 1 \mapsto i) \neq \operatorname{sol}(j 2 \mapsto i)))$
- A solution is shown below (20 ms):

3	1	2	4	5	6
2	3	1	6	4	5
1	6	5	2	3	4
4	2	6	5	1	3
5	4	3	1	6	2
6	5	4	3	2	1

Uses of the Latex Mode

- model documentation: generate a documentation for a formal model, that is guaranteed to be up-to-date and shows the reader how to operate on the model.
- worksheets for particular tasks: can replace a formal model, the model is built-up by Latex commands and the results shown. This is probably most appropriate for smaller, isolated mathematical problems in teaching.
- validation reports for model checking or assertion checking results,
- coverage reports for test-case generation,
- as a help to debug a model, and extract information,
- documentation of ProB's features, ...

Uses:FORMAT_TO_STRING manual entry

3.9 FORMAT_TO_STRING

This external function takes a format string (see Section 3.10) and a B sequence of values and generates an output string, where the values have been inserted into the format string in place of the ${ }^{\sim}$ w placeholders.

- the length of sequence must correspond to the number of "w in the format string.
- the format string follows the conventions of SICStus Prolog. E.g., one can use ${ }^{\mathrm{n}}$ for newlines.

Example uses:

- FORMAT_TO_STRING(" $\sim \mathrm{w} \mid->\sim w ",\{(1 \mapsto 20),(2 \mapsto 30)\})=" 20 \mid->30$ "
- FORMAT_TO_STRING("~w l-> ~w", [TO_STRING(20), "twenty"]) = "20 l-> twenty"
- FORMAT_TO_STRING("set $=\sim$ w", $\{\{3 . .4,1 . .2\}])=$ "set $=\{\{1,2\},\{3,4\}\}$ "
- FORMAT_TO_STRING(" $\sim \mathrm{w} \wedge \sim \mathrm{w}$ is $\left.\sim \mathrm{w} \sim \mathrm{i}^{\prime},\left[2,10,2^{10}, 0\right]\right)="{ }^{\wedge} 10$ is 1024 "
- FORMAT_TO_STRING("\{~w,~w\}",[\{2\},\{3\}])="\{\{2\},\{3\}\}"

Uses: B course notes

1 Relations

In mathematics a binary relation over the sets A and B is defined to be a subset of $A \times B$. The Cartesian product $A \times B$ in turn is defined to be the set of pairs $a \mapsto b$ such that $a \in A$ and $b \in B$.

Take for example

- PERSONS $=\{$ peter, paul, mary $\}$ and
- COLOURS $=\{$ red, green, blue $\}$, then
- PERSONS \times COLOURS $=\{($ peter \mapsto red $),($ peter \mapsto green $),($ peter \mapsto blue), (paul \mapsto red) $),($ paul \mapsto green $),($ paul \mapsto blue $),($ mary \mapsto red $),($ mary \mapsto green), (mary \mapsto blue) $\}$.
A particular relation could be let $r 1=\{$ peter \mapsto green, peter \mapsto blue, mary \mapsto blue $\}$. Another one is let $r 2=\{$ peter \mapsto green, paul \mapsto blue, mary \mapsto red $\}$. Both are illustrated in Fig. 1.

The End

End of the Latex and Constraint Solving Demo

