
Constraint Programming Puzzles in B

Michael Leuschel

September 2016

1 / 15

Introduction

• ProB can be used to process Latex files, i.e., ProB scans a
given Latex file and replaces certain commands (such as
\probexpr) by processed results.

• the following slides were generated (on
25/11/2016− 13h5624s) this way using ProB version
1.6.2− beta1 (TueNov2215 : 53 : 312016 + 0100) and the
command:
probcli -latex presentation_raw.tex presentation.tex

2 / 15

\probexpr

The \probexpr command takes a B expression as argument and
evaluates it. By default it shows the B expression and the value of
the expression.

• \probexpr{{1}\/{2**10}} in the raw Latex file will yield:
{1} ∪ {210} = {1, 1024}

• \probexpr{{1}\/{2**10}}{ascii} instructs ProB to use
the B ASCII syntax:
{1} \/ {2 ** 10} = {1,1024}

3 / 15

\probrepl

The \probrepl command takes a REPL command and executes it.
By default it shows only the output of the execution, e.g., in case it
is a predicate TRUE or FALSE.

• \probrepl{2**10>1000} in the raw Latex file will yield:
TRUE

• \probrepl{let DOM = 1..3} outputs a value and will define
the variable DOM for the remainder of the Latex run:
{1, 2, 3}

• \probrepl{f:DOM >-> DOM}{solution}{time} shows the
solution of a predicate and solving time:
f = {(1 7→ 3), (2 7→ 2), (3 7→ 1)} (0ms)

4 / 15

Other ProB Latex Commands

• \probtable show an expression (usually a relation) as a Latex
table

• \probdot show an expression (again, usually a relation) as a
Dot graph

• \probprint just pretty-print a formula
• \probif{Test}{Then}{Else} a conditional, evaluating a
predicate or boolean expression

• \probfor{ID}{Set}{Body} iteration

5 / 15

Overview

• We now show that some constraint problems can be encoded
very easily in B

• However, solving constraints in a language such as B is often
considered “too difficult”

• These examples show that some examples at least can be
solved by ProB

• Long term of goal of research on ProB: make B suitable as a
high-level constraint modelling language

6 / 15

Graph Coloring
• Let us first define a directed graph gr =
{(1 7→ 3), (2 7→ 4), (3 7→ 5)}

• We want to color this graph using cols = {red , green}
• We simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

• Solution found by ProB for ∃col .(col ∈
1..5→ cols ∧ ∀(x , y).(x 7→ y ∈ gr ⇒ col(x) 6= col(y))):

COLOURS

5

green

col

4

red

col

3

gr

col

2

col

gr

1

col

gr

7 / 15

Graph Coloring
• Let us first define a directed graph gr =
{(1 7→ 3), (2 7→ 4), (3 7→ 5)}

• We want to color this graph using cols = {red , green}

• We simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

• Solution found by ProB for ∃col .(col ∈
1..5→ cols ∧ ∀(x , y).(x 7→ y ∈ gr ⇒ col(x) 6= col(y))):

COLOURS

5

green

col

4

red

col

3

gr

col

2

col

gr

1

col

gr

7 / 15

Graph Coloring
• Let us first define a directed graph gr =
{(1 7→ 3), (2 7→ 4), (3 7→ 5)}

• We want to color this graph using cols = {red , green}
• We simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

• Solution found by ProB for ∃col .(col ∈
1..5→ cols ∧ ∀(x , y).(x 7→ y ∈ gr ⇒ col(x) 6= col(y))):

COLOURS

5

green

col

4

red

col

3

gr

col

2

col

gr

1

col

gr

7 / 15

Graph Coloring
• Let us first define a directed graph gr =
{(1 7→ 3), (2 7→ 4), (3 7→ 5)}

• We want to color this graph using cols = {red , green}
• We simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

• Solution found by ProB for ∃col .(col ∈
1..5→ cols ∧ ∀(x , y).(x 7→ y ∈ gr ⇒ col(x) 6= col(y))):

COLOURS

5

green

col

4

red

col

3

gr

col

2

col

gr

1

col

gr

7 / 15

Graph Isomorphism
• We define two directed graphs g1 =
{(v1 7→ v2), (v1 7→ v3), (v2 7→ v3)} and g2 =
{(n1 7→ n2), (n3 7→ n1), (n3 7→ n2)}

• The successors of v1 in g1 are g1 [{v1}] = {v2, v3}
• We can check g1 and g2 for isomporhism by trying to find a
solution for: ∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒
iso[g1 [{v}]] = g2 [iso[{v}]])).

• ProB has found a solution, which is shown below:

V

N

v3

n2

iso

v2

g1

n1

iso

g2

v1

g1

g1

n3

iso

g2

g2

8 / 15

Graph Isomorphism
• We define two directed graphs g1 =
{(v1 7→ v2), (v1 7→ v3), (v2 7→ v3)} and g2 =
{(n1 7→ n2), (n3 7→ n1), (n3 7→ n2)}

• The successors of v1 in g1 are g1 [{v1}] = {v2, v3}

• We can check g1 and g2 for isomporhism by trying to find a
solution for: ∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒
iso[g1 [{v}]] = g2 [iso[{v}]])).

• ProB has found a solution, which is shown below:

V

N

v3

n2

iso

v2

g1

n1

iso

g2

v1

g1

g1

n3

iso

g2

g2

8 / 15

Graph Isomorphism
• We define two directed graphs g1 =
{(v1 7→ v2), (v1 7→ v3), (v2 7→ v3)} and g2 =
{(n1 7→ n2), (n3 7→ n1), (n3 7→ n2)}

• The successors of v1 in g1 are g1 [{v1}] = {v2, v3}
• We can check g1 and g2 for isomporhism by trying to find a
solution for: ∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒
iso[g1 [{v}]] = g2 [iso[{v}]])).

• ProB has found a solution, which is shown below:

V

N

v3

n2

iso

v2

g1

n1

iso

g2

v1

g1

g1

n3

iso

g2

g2

8 / 15

Graph Isomorphism
• We define two directed graphs g1 =
{(v1 7→ v2), (v1 7→ v3), (v2 7→ v3)} and g2 =
{(n1 7→ n2), (n3 7→ n1), (n3 7→ n2)}

• The successors of v1 in g1 are g1 [{v1}] = {v2, v3}
• We can check g1 and g2 for isomporhism by trying to find a
solution for: ∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒
iso[g1 [{v}]] = g2 [iso[{v}]])).

• ProB has found a solution, which is shown below:
V

N

v3

n2

iso

v2

g1

n1

iso

g2

v1

g1

g1

n3

iso

g2

g2

8 / 15

Subset Sum Example (from Peter Stuckey)

• Problem:
“Find 4 different integers between 1 and 5 that sum to 14”

• B Formulation:
∃S .(S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14)

• one solution found by ProB: S = {2, 3, 4, 5}
• all solutions found by ProB:
{S |S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14} =
{{2, 3, 4, 5}} (0ms)

• Note: in a constraint programming language: [W,X,Y,Z] ::
1..5, all_different([W,X,Y,Z]), W+X+Y+Z #=14,
labeling([X,Y,Z,W])

9 / 15

Subset Sum Example (from Peter Stuckey)

• Problem:
“Find 4 different integers between 1 and 5 that sum to 14”

• B Formulation:
∃S .(S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14)

• one solution found by ProB: S = {2, 3, 4, 5}
• all solutions found by ProB:
{S |S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14} =
{{2, 3, 4, 5}} (0ms)

• Note: in a constraint programming language: [W,X,Y,Z] ::
1..5, all_different([W,X,Y,Z]), W+X+Y+Z #=14,
labeling([X,Y,Z,W])

9 / 15

Coins Puzzle

• We have various bags each containing coins of different values
coins = {16, 17, 23, 24, 39, 40}.

• Puzzle: In total 100 coins are stolen; how many bags are stolen
for each coin value?

• one solution found by ProB: stolen = {(16 7→ 2), (17 7→
4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→ 0)}

• all solutions found by ProB:
{s|s ∈ coins → N ∧ Σ(x).(x ∈ coins|x ∗ s(x)) = 100} =
{{(16 7→ 2), (17 7→ 4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→
0)}} (0ms)

• Observe: coins is not bounded

10 / 15

Coins Puzzle

• We have various bags each containing coins of different values
coins = {16, 17, 23, 24, 39, 40}.

• Puzzle: In total 100 coins are stolen; how many bags are stolen
for each coin value?

• one solution found by ProB: stolen = {(16 7→ 2), (17 7→
4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→ 0)}

• all solutions found by ProB:
{s|s ∈ coins → N ∧ Σ(x).(x ∈ coins|x ∗ s(x)) = 100} =
{{(16 7→ 2), (17 7→ 4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→
0)}} (0ms)

• Observe: coins is not bounded

10 / 15

Latin Squares
• Let us construct a latin square of order 6 using indices in
{1,2,3,4,5,6}.

• We want to construct a square
∃sol .(sol ∈ idx × idx → idx ∧ ∀(i , j1 , j2).(i ∈ idx ∧ j1 ∈
idx ∧ j2 ∈ idx ∧ j1 > j2 ⇒ sol(i 7→ j1) 6= sol(i 7→
j2) ∧ sol(j1 7→ i) 6= sol(j2 7→ i)))

• A solution is shown below (20 ms):

3 1 2 4 5 6
2 3 1 6 4 5
1 6 5 2 3 4
4 2 6 5 1 3
5 4 3 1 6 2
6 5 4 3 2 1

11 / 15

Latin Squares
• Let us construct a latin square of order 6 using indices in
{1,2,3,4,5,6}.

• We want to construct a square
∃sol .(sol ∈ idx × idx → idx ∧ ∀(i , j1 , j2).(i ∈ idx ∧ j1 ∈
idx ∧ j2 ∈ idx ∧ j1 > j2 ⇒ sol(i 7→ j1) 6= sol(i 7→
j2) ∧ sol(j1 7→ i) 6= sol(j2 7→ i)))

• A solution is shown below (20 ms):

3 1 2 4 5 6
2 3 1 6 4 5
1 6 5 2 3 4
4 2 6 5 1 3
5 4 3 1 6 2
6 5 4 3 2 1

11 / 15

Uses of the Latex Mode

• model documentation: generate a documentation for a formal
model, that is guaranteed to be up-to-date and shows the
reader how to operate on the model.

• worksheets for particular tasks: can replace a formal model,
the model is built-up by Latex commands and the results
shown. This is probably most appropriate for smaller, isolated
mathematical problems in teaching.

• validation reports for model checking or assertion checking
results,

• coverage reports for test-case generation,
• as a help to debug a model, and extract information,
• documentation of ProB’s features, ...

12 / 15

Uses:FORMAT_TO_STRING manual entry

13 / 15

Uses: B course notes

14 / 15

The End

End of the Latex and Constraint Solving Demo

15 / 15

