
Encoding the Crowded Chessboard Puzzle in B

Michael Leuschel

November 2016

1 / 24

Crowded Chessboard puzzle

(EBook # 16713 from Project Gutenberg)

2 / 24

Crowded Chessboard puzzle

• puzzle 306 from Dudeney, Amusement in Mathematics, 1917
• “The puzzle is to rearrange the fifty-one pieces on the
chessboard so that no queen shall attack another queen, no
rook attack another rook, no bishop attack another bishop,
and no knight attack another knight. No notice is to be taken
of the intervention of pieces of another type from that under
consideration—that is, two queens will be considered to attack
one another although there may be, say, a rook, a bishop, and
a knight between them. And so with the rooks and bishops. It
is not difficult to dispose of each type of piece separately; the
difficulty comes in when you have to find room for all the
arrangements on the board simultaneously.”

3 / 24

Various Encodings

• Puzzle much more challenging than 8-Queens; closer to “real”
industrial applications; but can still be presented relatively
compactly; Encodings:

• generic Prolog solution: using CLP(FD) + reification with sum
constraint; 100 lines of Prolog, but not successful for solving
n=8

• Z3 SMT Solution: hard-coded for 8 queens; various encodings
(board 7→ figures vs figures 7→ position), not successful for
n=8;

• generate SAT Encoding (7836 lines) from a Python program
(235 lines): n = 8 solved in 8 seconds by Z3, 2 seconds by
Sat4j

• Can we write a declarative specification and solve it ?

4 / 24

B Encoding

• the B model is very readable; we will return to performance
later

• below we first solve this puzzle where we set n to 4
• we use ProB version 1.6.2− beta1
• we have the following set of possible indexes:

let Idx = 1..n {1, 2, 3, 4}

5 / 24

Rook Horizontal/Vertial Moves

• let moveHV = λ(i , j).(i ∈ Idx ∧ j ∈ Idx |{k , l |k ∈ Idx ∧ l ∈
Idx ∧ (i 7→ j) 6= (k 7→ l) ∧ (i = k ∨ j = l)})

• E.g., moveHV (2 7→ 3) = {(1 7→ 3), (2 7→ 1), (2 7→ 2), (2 7→
4), (3 7→ 3), (4 7→ 3)}, visualized below:

00Z0
ZZRZ
00Z0
00Z0

6 / 24

Bishop Diagonal Moves

• let moveDiag = λ(i , j).(i ∈ Idx ∧ j ∈ Idx |{k , l |k ∈ Idx ∧ l ∈
Idx ∧ (i 7→ j) 6= (k 7→ l) ∧ (k − i = l − j ∨ i − k = l − j)})

• E.g., moveDiag(2 7→ 3) = {(1 7→ 2), (1 7→ 4), (3 7→ 2), (3 7→
4), (4 7→ 1)}, visualized below:

0Z0Z
00B0
0Z0Z
Z000

7 / 24

Knight Moves

• let dist = λ(i , j).(i ∈ Z ∧ j ∈ Z|(IF i ≥
j THEN i − j ELSE j − i END))

• let moveK = λ(i , j).(i ∈ Idx ∧ j ∈ Idx |{k , l |k ∈ Idx ∧ l ∈
Idx ∧ i 6= k ∧ j 6= l ∧ dist(i 7→ k) + dist(j 7→ l) = 3})

• E.g., we have
moveK (2 7→ 3) = {(1 7→ 1), (3 7→ 1), (4 7→ 2), (4 7→ 4)},
visualized below:

Z000
00N0
Z000
0Z0Z

8 / 24

All Moves

• single higher-order function,
• which for each piece returns the attacking function
• which in turn for each position on the board returns the set of

attacked positions

• let attack = {Rook 7→ moveHV ,Bishop 7→
moveDiag ,Queen 7→ λp.(p ∈ Idx × Idx |moveHV (p) ∪
moveDiag(p)),Knight 7→ moveK ,Empty 7→ Idx × Idx × {∅}}

9 / 24

Quick Validation

• let crd = λx .(x ∈ P(Z× Z)|card(x))

• λP.(P ∈ PIECES |crd [ran(attack(P))]), shown in the table
below:

Pce Attacks

Queen {9, 11}
Rook {6}
Bishop {3, 5}
Knight {2, 3, 4}
Empty {0}

10 / 24

Quick Validation

• let crd = λx .(x ∈ P(Z× Z)|card(x))

• λP.(P ∈ PIECES |crd [ran(attack(P))]), shown in the table
below:

Pce Attacks

Queen {9, 11}
Rook {6}
Bishop {3, 5}
Knight {2, 3, 4}
Empty {0}

10 / 24

Specifying number of pieces of each type

• ∃nrPcs.(nrPcs ∈ PIECES → 0..n2 ∧ (Queen 7→ n ∈
nrPcs ∧Rook 7→ n ∈ nrPcs ∧Bishop 7→ 5 ∈ nrPcs ∧Knight 7→
2 ∈ nrPcs) ∧ Σ(p).(p ∈ PIECES |nrPcs(p)) = n2)nrPcs =
{(Queen 7→ 4), (Rook 7→ 4), (Bishop 7→ 5), (Knight 7→
2), (Empty 7→ 1)}

11 / 24

Solving Crowded Chessboard Puzzle for n = 4

• ∃board .(board ∈ Idx × Idx → PIECES ∧ ∀(pos, piece).(pos 7→
piece ∈ board ⇒ ∀pos2 .(pos2 ∈ attack(piece)(pos)⇒
board(pos2) 6= piece)) ∧ ∀P.(P ∈ PIECES ⇒ card({p|p ∈
dom(board) ∧ board(p) = P}) = nrPcs(P))) TRUE

• first solution is visualized below:

R Q B 0
B R N Q
Q N R B
B B Q R

12 / 24

Compare B with 100 line Prolog non-solution
solve(N,Knights,Sol) :- length(Sol,N),

maplist(pieces(N),Sol), append(Sol,AllPieces),
Bishops is 2*N-2, Empty is N*N - 2*N - Bishops - Knights,
global_cardinality(AllPieces,[0-Empty, 1-N, 2-N, 3-Bishops,4-Knights]),
maplist(exactly_one(1),Sol), % one queen on every row
maplist(exactly_one(2),Sol), % one rook on every row
transpose(Sol,TSol),
maplist(exactly_one(1),TSol), % one queen on every col
maplist(exactly_one(2),TSol), % one rook on every col
findall(diag(D,Sol),diagonal(Sol,D),Diagonals),
maplist(at_most_one(1,Sol),Diagonals), % check queens do not attack each other on diagonals
maplist(at_most_one(3,Sol),Diagonals), % ditto for bishops
knights_ok(Sol),labeling([ffc],AllPieces),prboard(Sol).

...
exactly_one(Piece,List) :- count(Piece,List,’#=’,1).
at_most_one(Piece,Sol,diag(D,Sol)) :- at_most_one(Piece,D).
at_most_one(Piece,List) :- count(Piece,List,’#<’,2).
...
check_knight(Index,Line,K1) :-

(nth1(Index,Line,K2) -> not_two_knights(K1,K2) ; true).
not_two_knights(K1,K2) :- (K1 #= 4) #=> (K2 #\= 4).
...

13 / 24

Compare B with 601 line Z3 non-solution
; (set-logic QF_FD)
; datatype pair for column / row tuples
(declare-datatypes (T1 T2) ((Pair (mk-pair (first T1) (second T2)))))
...
; reduce symmetry by sorting queens
(assert (= (first q1) 1))
(assert (= (first q2) 2))
...
; unwind quantifier
; as z3 does not detect saturation of the implications
; LHS in the quantifier
(assert (not_same_diagonal q1 q2))
...
(assert (not_reachable_knight k20 k21))
(assert (distinct r1 r2 r3 r4 r5 r6 r7 r8

q1 q2 q3 q4 q5 q6 q7 q8
b1 b2 b3 b4 b5 b6 b7 b8 b9
b10 b11 b12 b13 b14
k1 k2 k3 k4 k5 k6 k7 k8
k9 k10 k11 k12 k13 k14 k15
k16 k17 k18 k19 k20 k21))

...

14 / 24

Compare B with 296 line Python SAT solution
...
def totalizer_c2(var_tuple,left_vars,right_vars,outputs):

(a,b,r) = var_tuple
if a > len(left_vars) and b > len(right_vars):

return "-" + get_var(outputs[r-1]) + " 0"
if a > len(left_vars):

return get_var(right_vars[b-1]) + " -" + get_var(outputs[r-1]) + " 0"
if b > len(right_vars):

return get_var(left_vars[a-1]) + " -" + get_var(outputs[r-1]) + " 0"
return get_var(left_vars[a-1]) + " " + get_var(right_vars[b-1]) + " -" + get_var(outputs[r-1]) + " 0"

...
encode knights movement
for numx in range(1,n):

for numy in range(1,n):
for (otherx,othery) in {(numx+1,numy+2),(numx-1,numy+2),(numx+1,numy-2),(numx-1,numy-2),(numx+2,numy+1),(numx+2,numy-1),(numx-2,numy+1),(numx-2,numy-1)}:

if otherx > 0 and otherx < 9 and othery > 0 and othery < 9:
output += ["-" + get_var(var_name("knight",numx,numy)) + " -" + get_var(var_name("knight",otherx,othery)) + " 0"]

s = card_constraints_adder("queen",num_queens,n)
output += s
s = card_constraints_adder("rook",num_rooks,n)
output += s
...

15 / 24

Readability and Performance

• this solution is very readable, much more readable than the
SMT, Prolog or Python SAT generator

• it is a natural mathematical specification of the problem
• but, as such ProB cannot solve it for n = 8
• it is higher-order, so it cannot be translated using Kodkod

16 / 24

Readability and Performance

• with our new KODKOD-SAT bridge, we simply annotate parts
of this higher-order B model

• ProB can then, with the help of Kodkod, solve this puzzle on
the annotated B encoding in a few seconds !

• we have obtained a readable and efficient model, much faster
than more low-level SMT or Prolog encodings !

• DEMO

17 / 24

Solving Crowded Puzzle using ProB+KODKOD

• ∃board1 .(KODKOD(1, board1 , n, bool(board1 ∈
1..n ∗ n→ PIECES)) ∧ KODKOD(1, board1 , n, bool(card({p|p ∈
dom(board1) ∧ board1(p) = Queen}) = n ∧ card({p|p ∈
dom(board1) ∧ board1(p) = Rook}) = n ∧ card({p|p ∈
dom(board1) ∧ board1(p) = Bishop}) = 5 ∧ card({p|p ∈
dom(board1) ∧ board1(p) = Knight}) = 2 ∧ card({p|p ∈
dom(board1) ∧ board1(p) = Empty}) =
n∗n−2∗n−5−2))∧∀(piece, i , j , i2 , j2).(i 7→ j ∈ (1..n)×(1..n)∧i2 7→
j2 ∈ attack(piece)(i 7→ j)⇒ KODKOD(1, board1 , attack 7→ i 7→
j 7→ i2 7→ j2 , bool(board1((i − 1) ∗ n + j) = piece ⇒
board1((i2−1)∗n+j2) 6= piece)))∧KODKOD_SOLVE (1, board1 7→
n, n 7→ attack)) TRUE

18 / 24

First Solution

R B Q N
Q 0 R N
B R B Q
B Q B R

19 / 24

Solving the full Puzzle

• we set n to 8 and let Idx = 1..n {1, 2, 3, 4, 5, 6, 7, 8}
• the number of attacked squares is:

Pce Attacks

Queen {21, 23, 25, 27}
Rook {14}
Bishop {7, 9, 11, 13}
Knight {2, 3, 4, 6, 8}
Empty {0}

20 / 24

Solving the full Puzzle

B B B Q B 0 N R
R N 0 N 0 N Q B
Q 0 N R N 0 N B
B N 0 N 0 N R Q
N 0 N 0 Q R N B
B Q R N 0 N 0 N
B R N 0 N Q N 0
B N Q B R B B N

21 / 24

Crowded Chessboard Solution from 1917

(EBook # 16713 from Project Gutenberg)
Answer from 2016: There is no solution with 22 Knights: Kodkod
Statistics: 679 ms translation, 34112 ms solving, 16201 clauses, 5313
variables, 325 primary variables.

22 / 24

Impossible Hard Sudoku

• by Norvig http://norvig.com/sudoku.html
• took Norvig’s solver 24 minutes and took ProB 21 minutes
with original B model (most normal Sudokus take ProB < 0.1
second)

• with new Kodkod-ProB bridge total time about 4 seconds
• Kodkod stats: 415 ms translation, 270 ms solving, 309151
clauses, 155235 variables

• higher-order set gets compiled away by ProB; only primitive
constraints sent to Kodkod and then to SAT

• with original FM’12 Kodkod backend it was very difficult to
write a B version of the puzzle that could be translated.

23 / 24

Outlook

• Applications:
• SlotTool to make it even faster
• bounded model checking for railway/interlocking examples

• Automatic inference of annotations
• make more robust; allow nested calls

24 / 24

